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THE COMPOUND PENDULUM



AN Essay onNn THE CoMPOUND PENDULUM

The problem of predicting the motion of the compound pendulum, shown opposite, was
presented to my freshman college physics class as unsolved; and so it remained, at least
in my thinking, for the next ten years, This is the seascn when a youth can imbibe such
elegant syntheses of man's understanding as the following: The image of pulses of light
as orthogonally alternating electric and magnetic fields, which measure the universe by
the speed of their advance; the eccentrieally pericdie aseendance and decline of pagan
and puritan instinets that we record as human history; and the endless precession of
DNA's twin coils, carrying the history of life's evolution on our planet. Each of these
phenomenz is a manifestation of what we would call the working-out of a dualistie
prineiple with time.

The fasicination with the compound pendulum seems to owe to its being the simplest
imaginable generator of this sort of movement. Even while watching the pendulum's
motion, it is hard to believe that such a simple device could possibly behave in ways that
are analogous to the several eomplex and important processes of which it may be thought
symbolic. Perhaps it is a respect for the imprint that the image of dualism-in-motion has
made on recent thought that has led to the establishing of mechanics of the compound
pendulum.

Article 1: Notation, co-ordinate frames, and sign conventions. When at rest, a

symmetric eompound pendulum can be fully described by as few as four parameters; viz
the @, L, 8 and H of the following figure:
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The plane in which these dimensions lie is called the "X-Z" plane: The "X" direction is
given by the line joining the two support locations of the pendulum; and the "Z" direetion
iz aligned with gravity, G. The "Y" direction is perpendicular te this plane, and the
positive sense of each direction is chosen so as to give us a right-handed frame of
reference.

The cireled integers @ through @ refer to this system's node points. In our analysis,
we will refer to the variables of position, P, aceeleration, A, and reaction, R, which are
developed at these nodes and which act in the three coordinate directions, The variable
M will denote the mass of either pendulum weight.

Article 2: The equation of the bi-harmonic oscillator. The characteristic motion of the
compound pendulum is that of bi-harmonie oscillation, such as diagrammed below.
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This is the form of motion that will be observed when the movement of the pendulum is
initiated by displacing one mass along the X- or Y- axis. A general algebraic deseription
of the two wave forms shown above would be:

Eqa. 2-1: P = D-cos [(wl +W2)-t:l.cos[(wl - Wz)-t]
2 2
Eqa. 2-2: P, = D-31n(wl + WZ)-t sinff "1~ WZ)-E

where D corresponds to the value of Py when time, t, is equal to Zero; where P, is zero
at t=0; and where wq and wy define the periods of the bi-harmonie eyeles and epi-cyeles,
as shown in the preceding figure. The essence of solving the pendulum problem ean be
said to lie in establishing the internal frequencies, wy; and wy on the basis of the
dimensions of a particular compotnd pendulum. Let us proceed to isolate these natural
frequencies empirically before presenting a rigorous solution, which requires more
algebra than would be justifiable on the basis of an ordinary level of euriosity,

If, in later analysis, we are able to establish that the mutual effects of the movements of
the two halves of the pendulum can be superimposed upon one another by simple addition,
then we can elaborate Equations 2-1 and 2-2 to the point of specifying the motions which
proceed from all initiating displacements, D; and Dy, of the two masses, Retaining, for
the momemt, our reference to motions which occur entirely in the X- or in the Y-
direction, the general equations for the movements in either coordinate direction would
be:

Eqa. 2-3: P| =D cos [(*1 * %\ ] cos (Wl " WZ)-t-
A N 2 §

+ D, -sin (™ +W2) t sin[(wl - Wz) t]

A y 2 i

Eqa. 2-4: P2 = Dy-cos hul + WZ)-I: .Ccos [(Wl B w2)-1:
A -z ]
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Earlier we observed that the bi-harmonic behavior mode is initiated by giving one or the
other mass an initial displacement and allowing the other mass to begin its motion from
rest. Let us perform a few imaginary experiments in which we contrive the motion-
indueing displacements, D; and Dy, s0 as to produce simple harmonic behaviors wherein
the separate identities of the natural frequencies, wy and wg will become manifest,
Intuition would have it that setting Dy =

results. Let us see.

Dg or Dy = - Dy will produce seme interesting



When Dy = Dy {=D) obtains, Equations 2-3 and 2-4 become:

P

Eqa. 2-5; 1

+

P, - D-{cos [(Wl_z___z).t]ocos [(Wi_zjjz_)t]

)

Now we apply the formulae for the sums and differences of angles to

+ w

sin [(Wl

the brackets of this equation. Recalling that

the expression in

cos(g + ¢) = cosdcos¢ - sinfsing; cos{~8) = cosg¢
sin(é + ¢) = sindcos¢ + cosgsing: sin(-¢) = -sing
we can transform Equation 2-5 into:
Eqa. 2-6: Py =P, = De}|cos "t .cos “2't - sin ¥1't .gin ¥2't
7 2z 7 Z
o icos "L't .cos Y2°t + sin ¥1°t .sin Y2't
2 2 7 7
+ |sin "Lt wcos ¥2°t + cos VL't .gin V2ot
2 Z Z 2
e {2in "1t .cos ¥2't - cos WL .gin W2t
7 7 T 2z
Multiplying as indicated brings us to:
Ega. 2-7: B = P2 =De cos2 Wt -0052 AR s:i.n2 Y-t sm2 Wyt
2 2 2 2
+ sin?{*1 6 cos?(¥2 E ) - cosH(¥1 Y sind(%2-*
WA 2 7 i

Factoring with an eye to cosz(wl't/z) + sinz(wl'tlz) =1, will yield

Eqa. 2-8: P = Dt[cosz(wz't/Z) - sinz(wz‘tlz)] = P,

2

Observing that cosZg - sin ¢ =cos 28 we finally arrive at:



Eqga. 2-9: Py = Py = D coslwy't)

whieh tells us that the smaller of the two internal frequencies of the X- or the Y- motion
of a compound pendulum, wg, governs the simple harmonic motion which proceeds from
the equal initiating displacement of both masses, Iy = Dy. An equally tedious process,
employing the same trigonometric identities in the same way, will show the equal and
opposite initial displacements of the pendulum’s two masses, D; = - Dy, will yield a
similar equation in the larger of the internal frequencies, wy:

Ega. 2-10: Py == P, = Dcos (wy°t)

Now let us bring Equations 2-9 and 2-10 to bear on the movements which observe along
the X- and Y- axes when either of these sets of initial conditions obtain.

Article 3: Observations of motion along the Y-axis. Taking the case of equal initial
displacements along the Y-axis first, we observe that the two masses behave identically
to the single mass of a simple pendulum with a total string length of @ + Lt
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The equation for the motion of a simple pendulum, such as on the right above,

Eqa. 3-1: P = D-cos(w"t)

will be derived later as a part of our formal statement of the mechanies of the ecompound
pendulum. At that time, it will be shown that the frequency, w, of a simple pendulum is
given by the square root of the intensity of the local gravity field, G, divided by the
length, E, of the string whieh joins the pendulum weight to its support:

Eqa. 3-2: w= JE-/—E?



A comparison of Equations 2-9 and 3-1 together with our anology to the simple pendulum,
above, will let us transform Equation 3-2 into the equation for the smaller of the two
frequencies which govern motion along the Y-axis of a compound pendulum:

_ [ G
Fga. 3-3: WZy_ TFQ

The analogy to a simple pendulum of an appropriate "equivalent length! is also helpful in
determining the larger of the two frequencies that govern motion along the Y-axis, Wiye
Reecall from Equation 2-10 that this is the frequency of the simple harmonie motién
whieh follows from equal initializing displacements:

/K T
Q N
. . A i

In the figure above, the pendulum weights move in & manner whieh always keeps them
180° out of phase. The period of this motion is the same as that of a simple pendulum
with an equivalent length, E, that is somewhere between L and L, + Q:

Eqa.3-4: LXE<L+Q



In order to determine E for the initial conditions implied above, we will have to examine
the extreme ease of the value of 5, the length of the horizontal string which joins the
two halves of the compound pendulum, As S8 ——= H, the two halves of the pendulum
become increasing independent, and the inner and outer eyeles merge to a single
harmonic wave form:
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Here the simple pendulum which preduces the analogous motion has an equivalent length
equal to L + Qs

Ega. 3-5: E=L+Q for S —H

Let us now repeat our experiment with a symmetrie compound pendulum that has been
set in motion by equal and opposite dispaleements aleng the Y-axis, but with §
approaching zero:
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Here we observe the inner and outer eyeles again converging to a simple harmonie wave
form, while the equally oppcsed forces that are developed through the symmetrie
movements of the two masses tend to peg node @ to a fixed point at the distance Q
from the supports. Inthis case, an anclogous simple pendulum would have an equivalent
length of L:

Eqa. 3-6: E=L for S —= 0

We may also observe that this equivalent length will also obtain as Q approaches zero.

At this point, we have nothing to lose by adding the assumption of linearity in the
realtionship between E and S to our growing list of what must be proven later, The
postulate of & linear linkage between Equations 3-5 and 3-6 suggests the following
equation for the equivalent length, E, of the simple pendulum which moves in a manner
that is analogous to the movements of a compound pendulum that has been initialized
with equal and opposite displacements along the Y-axis:

Eqa. 3-7: E=L+5Q/H

So we now have an empirically derived opinion for the nature of the greater of the two
frequencies which govern motion in the Y-direetion:

Eqa. 3-8: wy_ = ¢
qa. 278 W, = YT T 5.G/H

Having established wy,, and wq {in Equation 3-3} on the basis of experiments, let us now
propose an empirical ‘method for testing these findings, Laboratory procedures for
recording the instantaneous positions, veloeities, and accelerations of moving bodies are
far from trivial, and require much more apparatus than would be in keeping with the
spirit of using such a straight-forward instrument as & simple pendulum to infer the
behaviors of the compound pendulum. Let us return to the observation of bi-harmonie
motion whieh introdueced Article 2 in order to contrive another experiment that ean
easily prove or disprove our work to this point. Please recall that this motion follows
from an initial displacement of only one of the pendulum weights while the other is left
to begin movement from its rest position. We have postulated the fellowing equation for
the movement of one of the node peints denoting the location of a pendulum weight:

Eqa. 2-1: P = D-cos [(Wl + Wz).t].cos[(“’l . Wz).t]

And we have observed that frequencies, wy and wy, in this equation correspond to the
periods of the inner and outer cyeles of the bi-harmonie motion described at the outset
of Article 2.



So it ean be said that the frequenecies, wy and wg, of Equation 2-1 are apparent in an
easily made observation such as the number of times one of the pendulum weights will
osecillate in between those oceasional eycles when it appears to be completely at rest, A
count, N, of number of pulses per half eyele is given by ratio of half the larger period to
the shorter period:

2T
1 W 1YW
Eqa. 3-9: N = 2- T = zwl - W2
iwl + wziff

In order to evaluate this equation, let us re-state our Equations 3-3 and 3-8 in terms of a
common demoninator:

}G ¢+ ¥
Eqa. 3-10: le = LE?TQ)\)

fo@ - @
Eqa. 3-11: Woy = L( +Q?~)

where the Greek letters have the physical signifieance of coresponding to various areas
in the plane of the eompound pendulum:

XA T a
1 NR

Substituting Equations 3-10 and 3-11 intoc Equation 3-9 will quickly vield:

s+ Vo' + o

2¥

Eqa. 3-12; N =

whieh reduces to:

Eqa. 3-13: N= &/¢



for cases where ¢ is much less than ¥, which is typiesally the case. So, we offer Equation
3-13 as a statement of our findings which can readily disprove our work so far—that is
unless we have been fortunate encugh to have been correect.

Article 4: Observations of motion along the X-axis. Our work in the two previous
articles enables us to go directly to experiments which will reveal the natural
frequencies of motion along the X-aXis of the compound pendulum. We know that the
larger of these two frequencies, Wy, Will correspend to the simple harmonie motions of
both halves of & eompound pendulum that is set in motion by equal and opposite initial
displacements of the two pendulum weights along the X-axis:

P

Here again we observe that the equally opposed forces developed in the symmetric
movements of the pendulum's masses will peg nodes and motionless in their rest

positions, and that the only dimension which enters into the dynamies of this system is L,
hence:

Eqa. 4-1: Wiy =

[ k]

We would expect wg, to reveal itself when the initial X-displacements are alike in both
magnitude and direetion:
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Here we observe displacements of the entire plane of the compound pendulum at a
frequency which corresponds to that of a simple pendulum with the same total distance

between its point of support and the pendulum weight. The frequency of this motion is
given by:

_ G
Eqa. 4-2: w,, = )

These results can be tested by the means of predicting the number of pulses per half
cycle that was developed at the end of the last article. The corresponding equation,

. 2
Eqa. 4-3: N=2L+Q+%QL + 19

has no apparent elegance, especially in relation to the corresponding equation for
Y-motion. Note also that the herizental dimensions, H and S, of the compound pendulum
do not enter into the dynamics of motions that take place entirely along the X-axis, this
gives us some important cirtiera for our search into the prineiples that we require for &
formal development of the parameters and equations which govern the motion of the
compound pendulum. Since Y-motion does not distort the figure which the pendulum
presents to the X-Z plane, it cannot cause the horizontal components of reaction to vary
from their rest values; X-motion, on the other hand, can only be governed by the impulses
which arise from the differences between these reactions. Henece our final observation
would be to effect that the dimensions H and S are significant to the compound pendulum
only in that they speeify the rest values of the X-components of the support reactions:
These dimensions enter into Y-motion because the rest value of X-reactions must
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somehow enter into the values which are taken on by the Y-reactions during movements
along the Y-axis; the H and S§ dimension do not enter into purely X-motion beeause the
rest values of the X-reactions are equal and opposite and will, therefore, cancel cut when
the net impulse from these reactions is determined,

Article 5: Principles of Analysis. Our formal derivation of the equations and parameters
whieh govern the movements of the compound pendulum will be based on extensions of
the same principles that are necessary to derive the equation of motion for a simple
pendulum, An elementary free body diagram is suffieient to convey a sense of the flow
of forces in a simple pendulum:

o

In this figure, a pendulum of length L supports a weight of mass M in a gravitational of
intensity G. Displacements from rest along the X-axis are measured by the variable P;
accelerations in this direction are denoted by the variable ‘A, which is the second
derivative of P with respect to time; and the components of the tension in the string, T,
resolve into T, and T, along the coordinate axes. Qur basic principle for analyzing this
figure is simply the definition of a string as it is used in structural analysis, viz: An
idealized "string"™ offers no resistance to forces that would tend to bend it. Since we
observe that the string which joins the pendulum weight to its support remains straight
during oscillations, we must assume that all the forces on the pendulum weight resolve
into the axis of the string. The foregoing can be summarized in saying that the angle,
¥ , at whiech the pendulum is inelined must ecincide with the inclininations of the
tension vector, T, at all times. Mathematically, this eondition can be expressed as:

Eqa. 5-1: T

I
=g
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The foree diagram allows us to read off the following equations for the components of
tension:

Eqa. 5-2: T_=M-A
x
Eqa. 5-3: T, =- M-G

Substituting these eomponents of tension into Equation 5-1 and re-arranging will yield:
. _E
Eqa. 5-4: P = - E'A

Since A is defined as the second time derivative of P, this would be a fairly tractable
differential equation until be observe that E is related to P by way of Pythagoras:

Eqa.5-5; 2= L2-p?

At this point, the typical procedure is to note that #L2 -p? is not greatly different from
L when P is small in comparison to L. With this provision, we can substitute L for E in
Equation 5-4 to arrive at the following equation of motion for the simple pendulum:

Fga. 5-6: P =-A'G/L

The equation above defines the simple harmonie motion which is generally thought of as
being epitomized in the simple pendulum. (It may be intersting to note that actual
pendula are in striet conformance with this equation only to the extent that they exhibit
no motion at all.) The behavior modes to which the varible P is eonstrained by Equation
5-6 ean be shown, by direct substitution, to be fully expressed by:

Eqa. 5-7: P(t) = D cos (w*t +4)

where D arises from a displacement of the pendulum weight along the X-axis and w is
given by ¥YG/L. The parameter § allows for motions that are initiated by imparting an
initial veloeity to the pendulum weight. Having mentioned the possibility of motions that
are originated in this manner, we are going to drop the parameter § from consideration
at this point. Our feeling is that the motions of the compound pendulum can be made
fully apparent through initiating stimull that are entirely confined to displacements of
the two pendulum weights at time = 0; and that an exhaustive consideration of all the
possible initial eonditions would quadruple the number of equations and parameters that
would have to be treated while adding nothing to the entertainment value of our
presentation. Thus, our references to the equation for the motion of a simple pendulum
will be as follows:

Ega. 5-8: P(t) = D. cos(w.t)
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A passing observation may be made to the effeet that our treatment of the simple
pendulum allows nc deviations in the vertical ecomponent of the support reaction from its
rest value of M*G: Since our anelyses have lost sight of vertical displacements of the
pendulum weight when E was equated to L, there are no vertical accelerations to justify
any unbalaneed forces along this axis. Ostensibly, the deviations of the vertical support
reaction would be relatively small, just as P is small relative to L, so that implications of
our observation have little significance for the simple pendulum, But, when we transfer
our understanding of the simple pendulum to the analysis of the compound pendulum, the
simplifications which follow from the assumption of zero vertical displacements become
significant in & number of ways.

First, it should be noted that, if nodes @ and @are not displaced vertically in either X-
or Y-motion, then nodes @ and will not be displaced vertically either. This means
that the distance between nodes and @does not change, and that the X-components
for the positions of these nodes must, therefore, be identical at all times. A second
manifestation of the assumption of zero vertical displacements is that all motions in the
X-Y plane can be decomposed along the X- and Y-axes in a manner that shows the
movements along one axis to be independent of the movements taking place along the
other axis. On first consideration, this notion might appear to be arguable from the
standpoint of a balance of movements in the X-Y plane, where it is clear that the
accelerations and displacements along the two axes do interact to specify the
Y-components of reaction in ways which differ according to differing degrees of the
displacements.

There are a number of different ways to approach a point of view in which these
interactions appear to be of the "second-order" variety that were dismissed in the
analysis of the simple pendulum: Our initial observation might be to the effect that all
variations in the moment arms owing to displacements in the X-Y plane are small in
comparison to the dimensions H and S, and that the forees developed in this plane are
small in comparison the the constant pull of gravity on the pendulum weights. (Please
consult the diagram of foreces and displacements folded into the opposite page.) This
approach is essentially a translation of the simplifying assumptions that were made for g
simple pendulum to a horizontal plane. Another appraoch would originate in the
observation that the assumption of zero vertieal displacements confers the identity of a
linear, elastic system on the compound pendulum: In displacing a pendulum weight in the
horizontal plane, one encounters a resisting foree that is proportional to the amount of
the displacement (see Equation 5-4). Hence, we should, again, expect the prineiple of
structural superposition to apply; which it does in that all changes in the length of
moment arms in the X-Y plane will be exactly off-set by an opposing variation in the
force which acts through that moment arm.

The third manifestation of the assumption of zero vertical displacements for a compound
pendulum is that the vertieal components of reaction cannot change as a result of the
motions which take place in the X-Y plane. This notion should be problematie only for
X-motion, since movements along the Y-axis can be discounted in their effect on vertieal
reaction components on the basis of the same reasoning that was presented for a simple
pendulum. But it is far from clear that the displacements which take place in the X-7
plane have been constrained sc that they will always conspire with the eorresponding
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array of forces in & manner which keeps the burden of supporting the pendulum weights
equally distributed between the two reaetion points. Qur eoncern here is that the formal
development of the equations of motien for the compound pendulum will consider the X-
and Y-components of motion separately, and then assert that the prineiple of structural
superposition allows us to consider that these equations hold regardless of what may be
happening along a mutually orthogonal axis. Our preparation for such an assertion would
be entirely complete at this point, except that our development of the equations for
Y-motion depends on constant vertical reactions. Thus, the diseerning reader may not
allow that the equations for Y-motion hold when X-motion is present.

In order to avoid the possibility of appearing to use the princple of struetural
superposition in & facile or merely cireular manner, let us aceept the obligation to
demonstrate the constant nature of the vertical reactions as part of the development of
our equations for X-motion.

Article 6: The equations of motion. There are essentially three different eonsiderations
which govern the forms of movement that the compound pendulum ean demonstrate. The
first of these are "pendulum" equations that are anslogous that Equation 5-6. These
equations require a reference to the positions of nodes @5 and @ in order to relate the
accelerations of nodes and @ to the inclinations to the strings whieh join the
respective nodes:

Eqa. 6-1: Ay, =GP}, - Pa }/L
Eqa. §-2; Azx = —G'(sz - P4X)/L

Eqa. 6-3: A, =-G{P,, - Py )/L
1 1y ™ My

y

Eqa. 6-4: Agy =-G'(Pyy - Py)/L

y
These equations are an expression of the structural definitions of a string as being
incapable of resisting forces which tend to bend it. Four equations are required to
translate this notion from the simple pendulum of Article 5 to the compound pendulum:
One equation for each of the two extreme nodes in each of the two coordinate directions
that define the plane of motion.

The struetural definition of a string imposes a similar set of constraints on the
relationships between the support reactions and the inclinations of the strings at the
points of support. A mathematical expression of the notion that the forces acting at
nodes @ and must be resclved to the axis of the string which is connected to that
node would be as follows:

Eqa. 6-5: Rg /Re = [(H - 8)/2+P, ]/Q
Eqa. 6-6: Re /R;, = [® - 8)/2 - P, 1/
Fqa. 6-7: R5y/R52 = P3y/Q
Fga. 6-8: RGY/R()Z = Pay/Q

i
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A third group of equations arises from the definition of structural support, which can be

said to generate just the critical amount of force that is necessary to keep the support

point stationary at all times. These equations state the overall balance of the forces

acting along each coordinate axis, and the requirements that the resultant of all

moments in each plane of motion be zero. The equation which assures that nodes and
(8) do not rotate in the Y-Z plane is

Eqa. 6-9: ZM®+j = 0= M (A +Ap) L+ Q - MG (P + D))

The same consideration is the X-Z plane yields:

Bga. 610 ) Meyt) = 0= R, H - MG, + 4,0 L+ Q)

H+S H-S§
- M-G-[—2—+P2x+——2-——+Plx]

In order for the supports to remain stationary in relation to the Y-axis, the reaction
components must obey the following equation:

+ e = »
Eqa. 6-11: E Fy—-— 0= R’Sy + RBy +M (Aly + Azy)

A similar equation is required to fix the supports aleng the X-axis:
o .
Ega. 6-12: E F,—==0=Ry -Rg +M(A, +Ay)

At this point we have established twelve equations and introduced fourteen variables:
Six components of reaction, Ry, Rg., Rsp, Rey, Rsy, and Rg,; the four variables which
speeify the positions of the intermediate node poinfs, Pgyy Payr Pyy and Py s and the
four variables which specify the positions of the pendulum weights, P1ys» P1yr Poy, and
P2 . (Recall that all Z-displacements have been disregarded.) These equations have been
chésen so that they comprise a system which decomposes to govern the movements along
the two axes of motion. These two systems both involve the vertical components of
- reactions; so the six equations that could be applied to the movements along a single
coordinete axis must, in fact, explain eight variables:

Unknowns X motion Y motion
1
. R
2. rZ Rsg
3 6z Rg,
' R
5x R5
4, R y
6x Rs
5. P ¥
3x P3
6. P y
T 4% Pay
: Pix Py
8 Py Py
X . 2y
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We ean begin to make up our shortage of equations by a statement of vertical
equilibrium:

Fqe. 6-13: Ry, + Ry, = 2°M'G

which can be applied to both X- and Y-motion. One additional equation is available from
the consideration of external equilibrium, viz, the balance of moments in the X-Y plane:

Eqa. 6-14: ZM®+) = 0= - HR, - MAL ((H - 8)/2 + P1y)
- M-Azy-((H + S)/2 + Ppy)

APy My Py

But we must note that of the six such equations that we have presented, any five are
sufficient to specify the sixth. The remaining equations that are required to fully specify
X- and Y-motion must arise from our earlier consideration of analytical principles. To
completely specify movements along the X-axis, we must introduce the requirement that
the X-distance between the intermediate nodes must remain constant:

Fqa. 6-15: Py, =P,

We have established that, in our approximate view of the compound pendulum,
displacements in the Y-direction do nothing to change the vertical reactions:

Eqe. 6-16: Rs, = Rg, ( = M'G)

We have also introduced the suspicion that X-movements will leave this equation
unchanged; but, having introduced the vertical reactions as variables in the system of
equations which specify X-motion, we are in a position to allow this equation to manifest
itself as being vatid through &ll the behavior modes of the eompound pendulum.

Article 7: X-motion. The rigorous, general solution of our non-linear system of eight
equations in eight unknowns can be suecessfully appraoched using a number of schemes of
substitution for combinations of variables. Recalling some of the least incisive of these,
our essay might have been a hundred pages longer had we not discovered that the
pendulum weights always move in & simple harmonic manner relative to one another
when considered from the standpoint of movements along & single coordinate axis. To
demonstrate and take advantage of this regularity, let us introduce the following change
of notation:

Fga. T-1: a; = Agy + Agy
Eqa. 7-2: 82 = AlX - A2X
Eqa. 7-3: py = Pyy + Poy

Eqa. T-4: pg =Pi - Py
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Be-stating the pendulum equations, 6-1 and 6-2, in terms of our new variables yields one
simple harmonie equation if we also inveke the equality between Pgy and Py.:

Eqa. 7-5: a1 = {G/L} - (py - Py, = Py )
Ega. 7-6: ag = {G/L) * py
Equation 6-10 is also simplified by our change in variables:
Eqa. 7-7: Rg,'H =a; "ML + Q) + M'G'(H +py)
as can Equation 6-12:
Ega. 7-8: Rg, =Ry, +May

Our strategy will now be to derive expressions for P3y and Py, tya combining of
Equations 6-5 and 6-6 for these variables:

QRox H-3
Eqa. 7-9: P, ===~
Ix R5z 2
-Q-R, _
Ega. 7-10: Pre = RGGX + -}Lrs
Z

Adding Equations 7-9 and 7-10 yields:

R
_ 5% R6x
Eqa., 7-11: P3x+ qu Q [E Rﬁz]

This equation can be re-stated entirely in terms of the reactions at node @ through
Equations 7-8 and 6-13:

Fqa, 7-12: P, +P, = -RGX_M.al-RE]
aa. /-l2: Py P = Q MG -R._ R

- A 7 U J
Another substitution of Equation 7-10 and re-arrangement will eliminate Rgy:

(Rg, - MG -(H -5~ 2P, ) - MQa

Ega. 7-13: P3X + P4x G RGZ

Recalling from Equation 6-15 that P4, ean be substituted for Pyx» allows us to combine
Equations 7-13 and 7-5:

Ega. 7-14: (L/G)a; +py =(H - §) * (Rg, - M'GMIM'G) - Q-84 /G

This equation is simple enough to allow a usefu] substitution of Equation 7-7 for the
purpose of eliminating the last component of reaction, Rgpe
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Fqa. 7-15: ay* (L +Q)/G +py = (1 - S/H) {&;" (L + QY/G + py)

Two solutions to this equation which we may immediately note and disregard are S=H
and S = 0. Rearranging Equation 7-15 with the intent of preserving the time-variant
behaviors we errive at another equation for simple harmonie {(relative) motion:

Eqa. 7-16: a; = -G'py AL+ Q)

While this equation is at hand, let us use it te substitute for the ay of Equation 7-7 in
order to establish the behavior of the vertical reactions during displacements along the
X-axis:

_Gp
- 1 .- - M-
Eqa. 7-17: Rg H = qroaeM (L+Q) + MG H +pp) M'G'H
Here we have & validation of our postulate that each vertical reaction retains a constant

value of M*G even while the pendulum weights are displaced along the X-axis.

Now let us return to & consideration of Equations 7-6 and 7-16, which simultaneously
specify the positions of the pendulum weights along the X-axis. Continuing with our
practice of disregarding motions which are initiated by any means except in initial
displacement of the pendulum weights, we ean solve these two equations by inspeetion:
Ege. 7-18: py = Py, + Py, =-Clx-cos (wayt)
Eqa. 7-19: py = Py, - Py, = Co ecos (Wy, 1)

where Clx and sz are the initial relative displacements of the two pendulum weights
and wy, and Wg, have the same identity as they were given in Article 4:

Ega. 7-20: Wy = ‘f%
| &

-
/

Teis
Lda.

-2l 2x:VL+Q

Equations 7-18 and 7-19 can be solved together to yield separate equations for the
positicns of the pendulum weights throughout time:

Ega. T-22: 2Py, =C; 08 (Wo,'t) + Cgyecos (wy, 1)

Ega. 7-23: 2Py, = Cyy.c0s (W, t) - Cgyecos (wy,t)
In order to link these equations to the analysis which proceeded from Equations 2-1 and
2-2, let us evaluate the above in terms of the initial conditions that gave rise to the
observations that were made in Article 2: At time equals zero, P, was equal to D and Py

\e'as zero. Combining these considerations with Equations 7-22 and 7-23 will specify Cix=
% -
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Eqa. 7-24: Py = g— [cos(wzx-t) + cos(w]_x-t)]

Eqa. 7-25: P, = g [cos(wzx-t) - cos(wlx-t)]

Using the trigonometric identities for the sums and differences of angles that were
introduced in Article 2, we can transform each of the above into the standard form for
bi-harmonie motion:

Eqa. 7-26: Pie = D'cos[(wlx + w?,x) -t]- cos [(wlx ; WZX) -t:'

Eqa. 7-27: P, = D-s:'m[(wlx ;FWZX) .t]- s:i.n[(wlx - Vi) -t:l

where D is the initial displacement of the first pendulum weight, and the second
pendulum weight starts from rest.

This article has now velidated the speculative discourse of Articles 2 and 4 on the basis
of the laws of motion and our principles of analysis, We have also established that our
principles of analysis imply that vertieal reactions are not altered by displacements in
the plane of motion and that our mathematical approximation of & eompound pendutum
is, therefore, linear and elastic in regard to both X- and Y-motion. Hence, we may now
claim that our prineciples of analysis contain the sanetion for our linear superposition of
the effeets that the motion of one pendulum weight has on the other; and for our
decomposition of all motions into X- and Y-components.

Artiele 8: Y-motion. From our experience in the previous article, we should expect that
a change of variables which emphasizes the displacements of the pendulum weights
relative to one another will greatly simplify our analysis of motion along the Y-axis.

Eqa. 8-1: ﬁl = Aly + Azy

Eqa, 8-2: ay = Ayy - Agy

Eqa. 8-3: py = Ply + sz

Eqa. 8-4: pg = Ply - sz

A re-statement of the pendulum equations for Y-motion, 6-3 and 6-4, in terms of our new
variables will yield:

Eqe. 8-5: a1 =~(G/L) * (py - Pgy - Pyy)
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Eqa. 8-8: ag = -G/L) - (P2 - Psy + P4y)
A simple harmonie relationship will appear immediately upon re-stating Equation 6-8 in
terms of these new variables:

Ega. 8-9: ay ={GAL +Q) " p;
Equation 6-11 is also greatly simplified by this proeedure:
an. 8-10: 31 = ‘(Rsy + Rsy)/M

Using Equations 6-7 and 6-8, we arrive at the following expressions of the relationsips
between the reactions and the intermediate node points:

Eqa. 8-11: Py, =Q " Rsy/Rs,
Eqa. 8-12: Py =Q " Rgy/Rg,

A full compliment of equations for Y-motion is now to be arrived at as we recall that a
constant identity of M*G has been established for each of the vertical reactions.

It is unfortunate that this partieular compliment of equations does not contain enough
information to specify the variable ag, while a; is completely specified by Equation 8-9
and Equation 8-10 is merely redundant. Clearly, one of these equations must be dropped
in favor of a transformation of Equation 6-14:

, . 0
Fqa. 8-13: -H'Rg = M-A —2—+MA2y

Here we have ignored moments which arise from displacements of the pendulum weights
along the X-axis in accordance with the prineiples of analysis that imply a complete
separation between actions which take place along the axes of motion. (Please recall
from Artiele 5 that the practieal implications of ignoring X—displacements in the moment
equation for the X-Y plane was that moments arising from accelerations in the
X-direction result in off-setting moments which arise from changing the length of the
moment arms through whieh the Y-forces are acting.) Re—expressmg Equatlon 8-13 in
terms our change in variables yields:

H+S)

an. 8-14: RBY = -(M/2) : (81 -5 azlﬂ)

Let us now eliminate the reaction forces from our system by combining Equations 8-10,
8-11, 8-12 and 6-16 into the following:

Eqa. 8-15: Qa; =-G{Pg + Py)

This equation allows a substitution for " - P4 - P4 in Equation 8-5:
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Eqa. 8-16: a; = ~«(G/L)  (py + Q'a;/G)

which can be re-arranged in the exaet form of Equation 8-9, thereby admitting this
equation back into our system for Y-motion while allowing us to drop our consideration of
moments in the Y-Z plane whieh had produeed this equation by direet observation.

Having thus reconstituted our system of equations for Y-motion, we can now use
Equation 8-14 in our search for a simple equation in the variable a,. Let us begin by
eliminating R5y from Equations 8-10, 8-11 and 8-12:

Ega. 8-1T: M'G(Pyy - Pg,)/Q = 2Rgy + May

Eliminating Rg,, from this equation through a substitution with Equation 8-14 will also
eliminate the variable a,:

-18. p =9
Eqa. 8-18: P, - Py = &

3 )

faui} Vs

which can serve to eliminate the references to intermediate nodes in Equatjon 8-6:

Eqa. 8-19: ag = «(GAL +S* Q/H) " py
With Equations 8-% and 8-19 in hand, we can appeal to the analysis which closed our
previous article on X-motion, snd say that the frequencies for the simple harmonic

motion speeified in these two equations ean be identified as the internal frequencies of
the bi-harmonie oscillator equations that were set out in Articles 2 and 3:

Eqa. 8-20: wly AT

Eqa. 8-21: WZY =

This means that we ean elaim that our speculations in Article 3 regarding Y-motions have
been validated by the extension of our prineiples of analysis.

Article 9: Summary. This classical differential form of the equation for a bi-harmonie
oscillator would be a system such as the following:

Eqa. 9-1: A) =- {P{ - [P,
Eqa. 9-2: Ay =- {Pj - £P,

which would ecneeal the natural frequencies of whatever system they deseribe thusly:
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_wz+w2
Fqa. 9-3: £="1 " %

Fga. 9-4: (=" "™

The solution that we have presented did not make use of a system such as the above
because we opted for a change of variables that would permit a mueh more compact
exposition that would have been possible otherwise. Since this important interpretation
of the ecompound pendulum has been left cut of our presentation thus far, Iet us at least
use it as & means to recapitulate our findings. To recall the geometric parameters of the
pendulum that seem to be critical to its motion, we would present:

X7/, T TN
// 8 / /! \ A \
VAN NN

The netural frequencies which we have addueed for the compound pendulum (referring to
the figure above) are:

Ega. 8-5: w, = V G/AL + Q)

—
Eqa. 9-6: wy = ¥ GAL + Qs/m)

Faa. 9-T: w, = ‘f G/L

We have changed our notation slightly to take advantage of our observation of a single
frequency, W, = Wgy = Wg., Which underlies movements in both ecordinate directions.
Let us also re-introduce our interpretation of the natural frequencies which determine
Y-motion in terms of the areas that are marked out by the nodes of the pendulum:

_‘}G'(ﬂ + @)
Eqa. 9-8: Wy = W

G (3 ~—¥
Eqa. 9-9: w, = V—L—E?"_FF'Q"X)"
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Using this notation, we can set out the parameters of the differential system which
introduced this article as follows:

T)

Eqa. 9-10: &, = 3
- _G¥

Eqa. 9-11: g’y “TeFan

A similar statement for X-motion will not be as elegant because, as we observed earlier,
- the horizontal dimensions of the compound pendulum do not enter into the frequencies of
motion along this axis:
_19. _G[@L+Q) + L]
Egqa. 9-12: EX 2—-[1‘ “‘“QT
_G

Eqa. 9-13: { =5 [%%TL]

Now we have identified the natural frequencies of the compound pendulum in terms of
the parameters of a differential system, Equations 9-1 and 9-2, that can be solved using
available techniques, and for any desired boundry conditions. If we restriet ourselves to
those motions which arise solely from initial displacements of the pendulum weights, we
can write the following equations for the extreme node points:

Eqa: 9-14: El(t) = /‘?:-Dlx-cos W, Wo't]'cos[wx - wo.t:l
L 2 2
N fw, +w_. ] = w_ ]
+ j-Dy_wcos|’y o . |+cos 0,
Ly |~ .t_ __LZ_ t_
Fa) s fw tw, (W - W)
+ i sz-sm X 9.5 x O.p
L 2 i L 2 J
W, +w W - w._ 7

+5\'D2y-sin—z‘ o.t_-sin y 0.

Eqe. 9-15: Py(t) = Q-sz.cos :Wx Zwo t: -Cos :wx ; Yo t:
+ ?-Dzy-cos -wy + wo_t_ -cos[wy ; Yo t-
+ fi\-Dlx-sin:w +Wo.t -sinij - wo.t-
+ ?-Dly-sinl:wz + wo‘t— -Sinpwz ; wo‘t-



In these equations, Diy, Doy, Dy, and D2 are the initial displacements of the
respective nodes along their respecg ve axes, wh11e i and 7 are vectors of unit length

along the X- and Y-axes.
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